Summer Course 2022

"NATURE-BASED SOLUTIONS (NBS) TO CONFRONT WATER EXTREMES IN EUROPE: DESIGN AND MODELLING TOOLS"

(Within the project TRITON; https://triton.wasser.tum.de/)

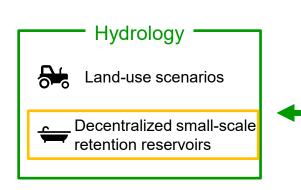
Process-based modeling of technical retention measures for mitigating floods and droughts

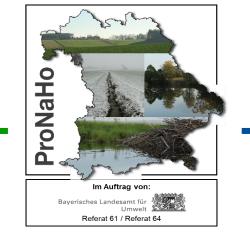
Prof. Dr.-Ing. Markus Disse

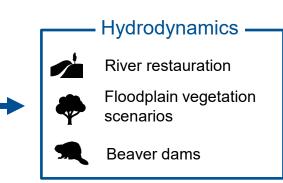
Chair of Hydrology and River Basin Management

Technical University of Munich

Athens, 06.09.2022, 09:00-09:30

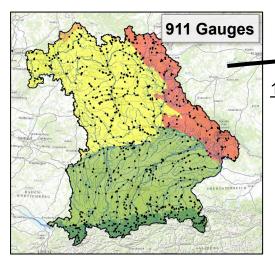



Project ProNaHo (Process based modelling of natural and decentralized flood retention measures for the analysis of event and catchment dependent efficiency)


Modeling approach:

Coupling based on "Windachstudy" (Rieger, 2012):

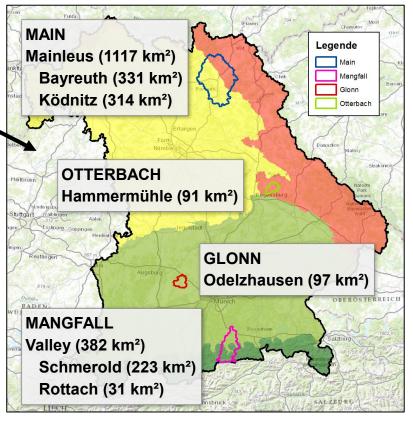
WaSiM (Hydrology) – HYDRO_AS-2D (Hydrodynamics)


ProNaHo

Study area selection and description

Study area selection

Approach and conclusion


<u>Goal:</u> 4 study areas (+ 4 TG)

- 1 x ~ 1000 km²
- 1 x ~ 150-550 km²
- 2 x ~ 100 km²

13 Selection criteria:

- 1-6: Reduction of number of gauges (Region, gauging timeframe, topography, suitability to model, size)
- 7-13: Suitability for scenarios

(density of gauges, landuse distribution, existence of beaver populations, ...)

ProNaHo

Decentralized retention reservoirs

Methods

Approach

Reservoir site analysis

- Potential locations for reservoir
- Water level Volume Relation

Two groups:

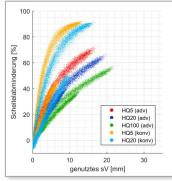
Random reservoir combinations :

- Number of Reservoirs (10 possibilities)
- Spatial layout in catchment (about 300)
- Dimensioning target (5 scenarios)
- Scenarios (5 precip. scenarios)
- Reservoir groups (2)
- \rightarrow ca. 150 000 combinations per study-area Location-optimized reservoir combinations:
- 21 combinations (Number of reservoirs)
- 5*5 (scenarios * Dimensioning target)
- \rightarrow ca. 525 combinations per study-area

20 30 genutztes sV [mm]

Analysis of influencing factors

Dependability on efficiency


- · on the specific volume
- on the number of reservoirs.
- on the spatial layout in catchment
- on the characteristics of scenarios
- on the dimensioning target
- · on the study-area characteristics
- on super positioning effects

Efficiency Analysis

Reservoir pre-selection

 Potential feasible sites Hydrologically effective sites

Scenario selection

Parameter variations:

- 1. Number of basins / spez. Volume *sV* (~ 10 alternatives)
- 2. Locations in the catchment (catchment-specific, ca. 1000)
- 3. Discharge for dimensioning at the basin outlet (5 events)
- 4. Return period and event characteristics (5 events)

 \rightarrow ca. 250 000 combinations per catchment (ca. 2 000 000 in total)

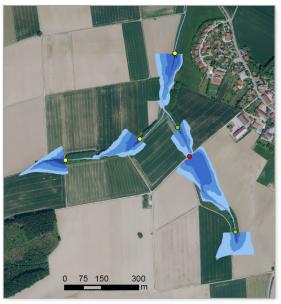
Sources:

TESCHEMACHER, S., BITTNER, D. & DISSE, M. (2020a): Automated Location Detection of Retention and Detention Basins for Water Management. Water 12 (5), S. 1–32, https://www.mdpi.com/2073-4441/12/5/1491

TESCHEMACHER, S., & DISSE, M. (2020b): Automated location optimization of detention basins as a contribution to an efficient flood mitigation strategy, EGU2020-18342, https://doi.org/10.5194/egusphere-egu2020-18342

TESCHEMACHER, SONJA (2021): Gebietsübergreifende Retentionspotenzialanalyse agrarwirtschaftlicher und konstruktiver Maßnahmen des dezentralen Hochwasserrückhalts, Dissertation, https://mediatum.ub.tum.de/?id=1586359

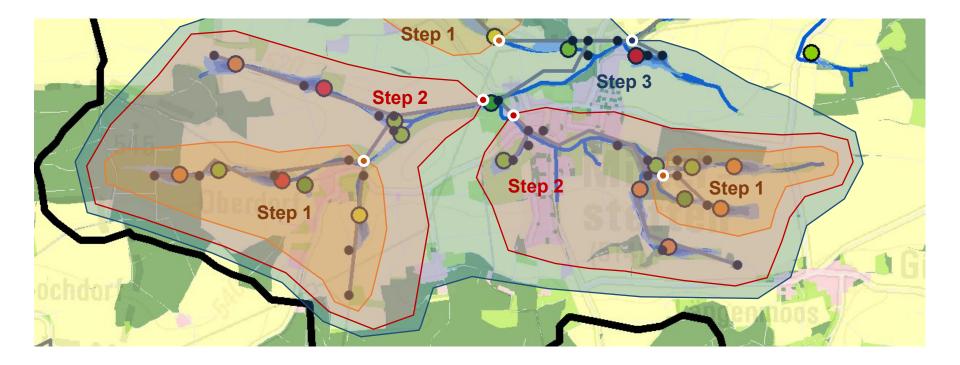
sV [mm] = $\frac{\text{basin volume } [\text{m}^3]}{\text{catchment area } [\text{km}^2]} \cdot 10^{-3}$



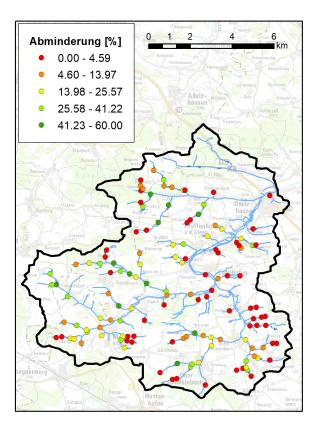
Site selection procedure

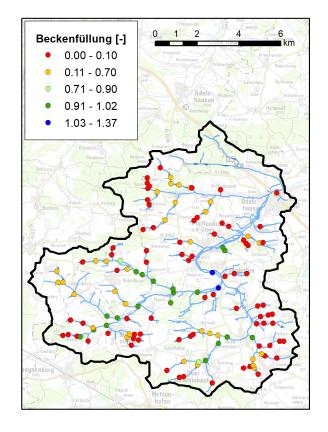
data preparation | ArcMap (dgm, dgm_fill, dir, acc, gew_gross, landuse, pur, ezg)

basin position analysis | MATLAB (*fun_Programm_Durchlauf.m*)

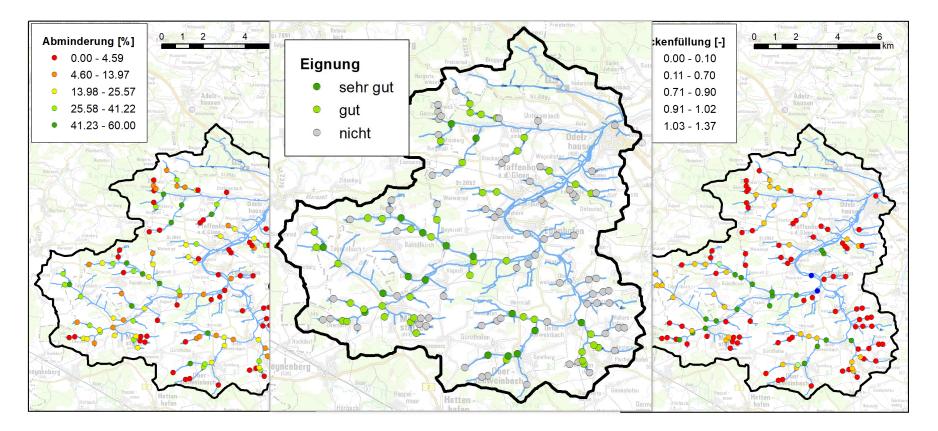

user input	 Maximum water depth, max. and min dam length Raster length & threshold for river definitions 		
raster analysis	 River analysis: characteristics of river points Land use classification (restriction areas) 		
dam analysis	 Detection of shortest dam for every river point Determination of dam characteristics 		
basin analysis	Calculation of basin area and volumeDetermination of evaluation criteria		
basin selection	 Analysis of evaluation criteria and overlapping basins Selection of a potential basin combination 		

Methods




Location-optimization

Site evaluation



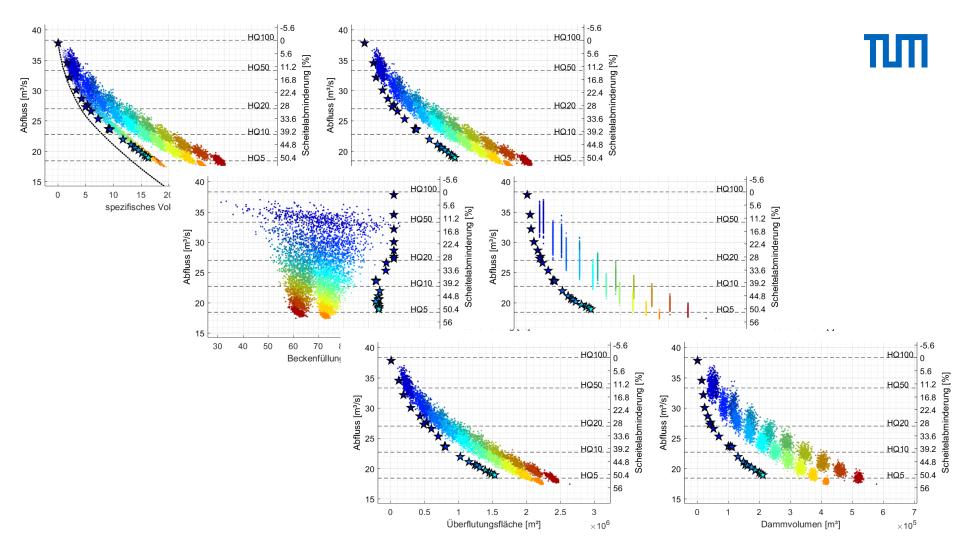
Site evaluation

Results

Locationoptimization

Max. potential (horizontal capping

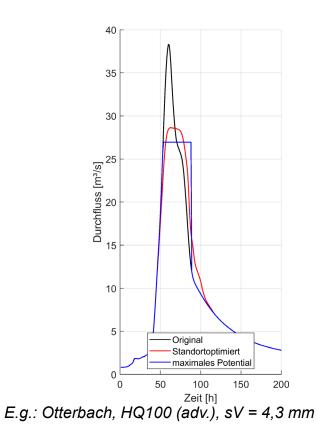
at catchment outflow)


Efficiency depending on various Influencing factors

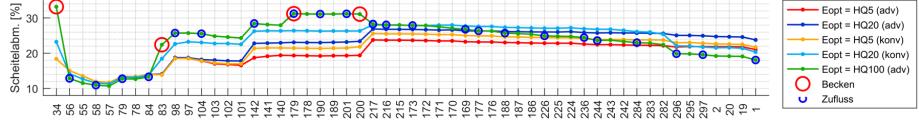
spezifisches Volumen [mm]

Abfluss [m³/s]

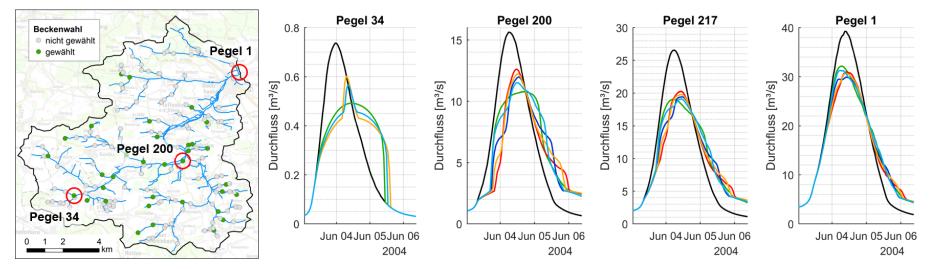
	Gru	ppierung	Berücksichtige Kriterien		
	Gruppe 1	Alle potentiell möglichen Standorte	 Sinnvolle Zuordnung im hydrologischen Modell möglic V_{Damm}: 0 bis 4 m V_{HWE}: 5 000 bis 50 000 m³ 		
S	Gruppe 2			nem Ereignis größer 40 % $< 0.05 \text{ m}^3/\text{s}$ und Kriterium 2 > 0,5 $> 80 \text{ m}^3/\text{s}$	
			HQ100 0 5.6 -	Random choice of combinations	
	Colors: Numb of reservoirs of combinations	of	HQ50 - 11.2 16.8 22.4 pu	(group 1) Random choice of	
			HQ20 3 28	combinations (group 2)	
			33.6 uq HQ10 _ 39.2 . 44.8 - 44.8 -		
			HQ550.4 ^Ø	Utilized specific volume	


E.g.: Otterbach, HQ100 (adv.)




Results

Assessment of location-optimization



Pegelnummer

Top: Course of peak attenuation over the watercourse for different attenuation optimizations, bottom left: spatial distribution of basin locations, bottom right: hydrographs for different attenuation optimizations for selected basin locations (Glonn catchment)

Conclusions

Methods for site analysis, location optimization, throttle optimization and efficiency analysis have large potential for flood defense concepts

In-depth analysis of the impact of scenario characteristics on the throttle width and the resulting peak-discharge → various temporal and spatial precipitation distributions

Small retention basins can also be used for groundwater recharge → combined effect of flood retention and drought mitigation

Thank you for your attention! Questions?