



Laboratory of Applied Hydraulics

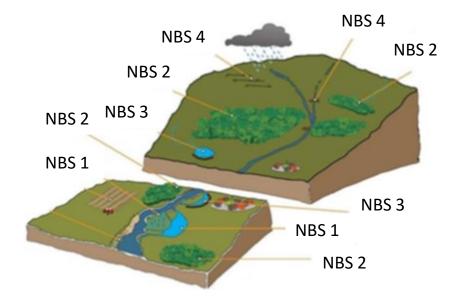


National Technical University of Athens School of Civil Engineering National Tech Univ. of Athe

# Methodology for Modelling Natural Based Solutions in HEC-RAS

Prof. Anastasios Stamou – Giorgos Mitsopoulos Phd Candidate Laboratory of Applied Hydraulics of National and Technical University of Athens






### 1. Introduction

**Natural Flood Management (NFM):** 'Natural flood management involves techniques that aim to work with natural hydrological and morphological processes, features and characteristics to manage the sources and pathways of flood waters. These techniques include the restoration, enhancement and alteration of natural features and characteristics, but exclude traditional flood defense engineering that works against or disrupts these natural processes'.

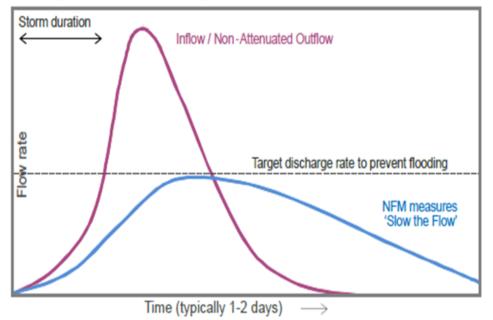
#### According to literature the main Natural Based Solutions (NBS) are:

- 1. river restoration and flood plain reconnection (NBS 1),
- 2. reforestation and afforestation (NBS 2),
- 3. retention ponds detention ponds (NBS 3) and
- 4. leaky barriers (NBS 4).








organizers



### 2. Objectives of NFM – Retention Pond

#### The Objectives of the NFM and especially of the retention pond are:

- Reduce the downstream maximum height of a flood (the flood peak)thus reducing the scale and impact of the flood
- Delay the arrival of the flood peak downstream, thus increasing the time available to prepare.



#### Slowing the Flow after heavy rainfall







oraanizers



### 3. HEC-RAS Application Methodology

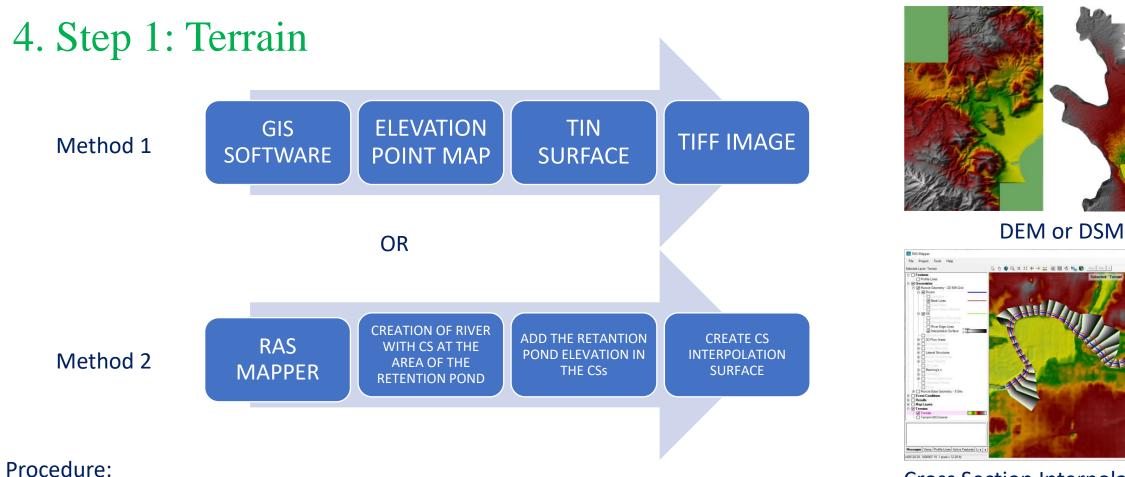
Step1: Creation of the terrain, where the application will take place.

Step2: Create the HEC-RAS river model (River axis, Cross Sections), apply boundary conditions and run the model to obtain initial conditions.

Step3: Give boundary conditions and run the model to obtain initial conditions.

Step4: Add lateral structures at the overbank of the river next to the retention pond.

Step5: Create the 2D mesh at the area of the retention pond and connect it to the lateral structure.


Step6: Create gates at the lateral structures with it boundary conditions to reduce the discharge inside the river.

Step7: Compare the results before and after the use of the retention pond to see if further calibration is needed.





National Technical University of Athens School of Civil Engineering National Tech Univ. of Athen



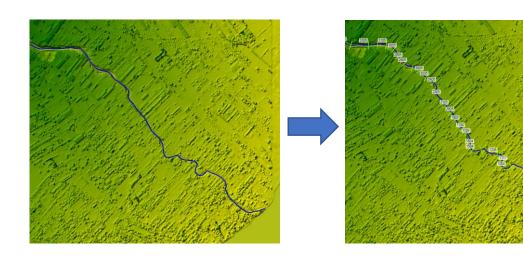
- We enter RAS-Mapper
- We load the correct coordinate system
- ✤ We create RAS-Terrain by using a) DEM or DSM and b) Tiff Image from Method

**Cross Section Interpolation Surface** 

organizers



National Technical University of Athens School of Civil Engineering National Tech Univ. of Athens


### 5. Step 2: River Model

SEPTEMBER 7-9, 2022

7<sup>th</sup>IAHR

EUROPE

CONGRESS



Draw the Stream Centerline Create the cross section line perpendicular to the streamline

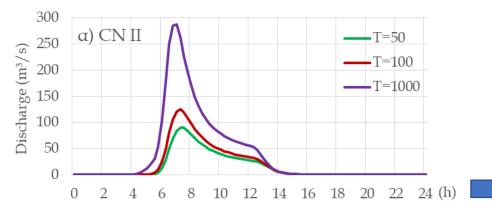
DIVANI CARAVEL HOTEL ATHENS, GREECE Innovative water management in a changing climate

> - -Cross Section Data - Geometry File from GeoRAS Exit Edit Options Plot Help Apply Data 1 + m Plot Options B 3 Keep Prev XS Plots Clear Prev River: Trib • ▼ River Sta.: 3543.919 Reach: Trib - 1 t Use of GeoRAS Input Plan Description Del Row Ins Row Legend LOB Channel ROB Ground 324.013 324.013 324.013 575 Station Elevation A Bank Sta 575.44 570 2 32.87 573.22 LOB Channel ROB 3 288.74 559.29 0.04 0.03 0.04 565 4 312.75 558.21 Main Channel Bank Stations 5 312.77 558.21 Left Bank Right Bank 560 6 326.31 557.9 331.54 411.66 555.71 7 331.54 555 346.76 549.32 nt\Exp Coefficient (Steady Flow) 9 350.99 547.48 Contraction Expansion 550 10 351.11 547.43 0.1 0.3 11 351.21 547.39 545 10 0510 ---200 400 600 800 Station (ft) Edit Station Elevation Data (ft)

Give cross section coordinates, roughness, reach lengths, contraction/expansion coefficients and define where the banks are.

6






National Technical University of Athens School of Civil Engineering National Tech Univ. of Athen

### 6. Step 3: Boundary Conditions

DIVANI CARAVEL HOTEL ATHENS, GREECE Innovative water management in a changing climate

SEPTEMBER 7-9, 2022



Flow Hydrograph

7th IAHR

CONGRESS

#### **Possible Boundary Conditions**

- 1. Inlet Boundary conditions
  - Stage or flow hydrograph
  - Rating Curve

#### 2. Outflow Boundary conditions

- Normal Depth
- Rating Curve

| Indary Conditions                               | Initial Conditions |              | gical Data Observed Data |                       | 1 |
|-------------------------------------------------|--------------------|--------------|--------------------------|-----------------------|---|
| Boundary Co<br>Stage Hydrograph Flow Hydrograph |                    |              | Stage/Flow Hydr.         | Rating Curve          |   |
| Normal Depth                                    | Lateral In         | nflow Hydr.  | Uniform Lateral Inflow   | Groundwater Interflow |   |
| .S. Gate Opening:                               | Elev Cont          | rolled Gates | Navigation Dams          | IB Stage/Flow         |   |
| Rules                                           | Precip             | pitation     |                          |                       |   |
|                                                 |                    |              |                          |                       |   |
| River                                           | Reach              | RS           | Boundary Condition       |                       |   |
| River 1                                         | Reach 1            | 5124         | Flow Hydrograph          |                       |   |
| River<br>River 1<br>River 1<br>River 1          |                    | _            | Flow Hydrograph          |                       |   |

| Plan: ss1                                                                        | Short ID: us1    |                             |           |  |  |  |  |  |
|----------------------------------------------------------------------------------|------------------|-----------------------------|-----------|--|--|--|--|--|
| Geometry File:                                                                   | FINAL_GEO_15_7   |                             |           |  |  |  |  |  |
| Unsteady Flow File:                                                              | us               |                             |           |  |  |  |  |  |
| Programs to Run                                                                  | Plan Description |                             |           |  |  |  |  |  |
| Geometry Preprocessor<br>Unsteady Flow Simulation<br>Sediment                    |                  |                             | ^         |  |  |  |  |  |
| ✓ Post Processor ✓ Floodplain Mapping                                            |                  |                             | ~         |  |  |  |  |  |
| Simulation Time Window                                                           |                  |                             |           |  |  |  |  |  |
| Starting Date: 1                                                                 | 4JUL2022         | Starting Time:              | 0000      |  |  |  |  |  |
| Ending Date: 1                                                                   | 4JUL2022         | Ending Time:                | 0700      |  |  |  |  |  |
| Computation Settings                                                             |                  |                             |           |  |  |  |  |  |
| Computation Interval: 5                                                          | Second 💌 H       | lydrograph Output Interval: | 15 Minute |  |  |  |  |  |
| Mapping Output Interval: 1                                                       | 2 Minute 💌 D     | etailed Output Interval:    | 1 Hour    |  |  |  |  |  |
| Project DSS Filename: 🗨 c: \Users \hydro \Desktop \HR_T_R25_FULL_3_8 \TERRAIN_2. |                  |                             |           |  |  |  |  |  |
| Mixed Flow Regime (1D only) is enabled.                                          |                  |                             |           |  |  |  |  |  |

#### Important Note to avoid instabilities!! In unsteady flow analysis check

- 1. Which solver option is appropriate (FDM, FVM)
- 2. The time step (Courant criteria)
- 3. Relaxation factors





National Technical University of Athens School of Civil Engineering National Tech. Univ. of Athens

### 7. Step 4: Lateral structures

SEPTEMBER 7-9, 2022

7thIAHR

| 🐨 Lateral Structure Editor - Muncie                                                                | Geometry - 2D 50 ft grids       | >                              | :                    |                                              |                                                | •                     |
|----------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------|----------------------|----------------------------------------------|------------------------------------------------|-----------------------|
| <u>File View Options H</u> elp                                                                     |                                 |                                |                      |                                              |                                                |                       |
| River: White 💌                                                                                     | Apply Data 🕂 🗰                  |                                |                      |                                              |                                                |                       |
| Reach: Muncie                                                                                      | HW RS: 13214 🗨 🖡 🕇              |                                |                      |                                              |                                                | ***                   |
| Description                                                                                        | Plan Data                       |                                |                      |                                              |                                                |                       |
| HW Position: Left overbank                                                                         | Optimization Breach             |                                |                      |                                              |                                                |                       |
| Tailwater Connection                                                                               |                                 |                                |                      |                                              |                                                |                       |
| Type: Storage Area/2D Flow Area                                                                    | a 🗸                             |                                |                      |                                              |                                                |                       |
| SA/2DFA: 2D Flow Area: 2DFlowArea                                                                  | Set SA/2DFA                     | Weir Length: 1010              | 26                   |                                              |                                                |                       |
|                                                                                                    |                                 | Centerline Length: 1010        | 26 🔨 Geo             | ometric Data - Muncie G                      | eometry - 2D 50 ft grids                       | н                     |
| Overflow Computation Method                                                                        | 2D Boundary                     |                                | <u>File</u> Ed       | dit <u>O</u> ptions <u>V</u> iew <u>T</u> ab | les <u>T</u> ools <u>G</u> IS Tools <u>H</u> e | lp                    |
| C Normal 2D Equation Domain                                                                        | e Weir Equation Use Velocity    | Centerline GIS Coords          | Jools                | River Storage 2DFlo<br>Reach Area Area       |                                                | ence                  |
| All Culverts: No Flap Gates                                                                        | •                               | Terrain Profile                | Editors              | Reach Area Area                              | BC Lines Point                                 | Tat                   |
| Structure Type Weir/Gates/Culverts/Dive                                                            | ersion Rating Curves 💌          | Clip Weir Profile to 2D Cells. | Junct.               | 10672.75                                     | •••••                                          | •                     |
| Embaskment HW and                                                                                  | TW Connections Determined Geo-S | Spatially                      |                      |                                              |                                                |                       |
| Gate                                                                                               |                                 |                                | Cross                | and                                          |                                                | . 🌣                   |
| Gate 13214.80                                                                                      | 12817.36 124                    | a2.03                          | Section              | • • • • • • • • •                            |                                                | •                     |
| Culvert                                                                                            |                                 | Lat Struct                     | · · · · ·            | • • • • • • • •                              | • • • • • • • • • •                            | •                     |
| 950                                                                                                |                                 | Ground                         | Brdg/Culv            |                                              |                                                |                       |
| Diversion<br>RC<br>E<br>BC<br>BC<br>BC<br>BC<br>BC<br>BC<br>BC<br>BC<br>BC<br>BC<br>BC<br>BC<br>BC | ~ <b>i</b> ~                    | Bank Sta                       | T                    |                                              |                                                |                       |
| Diversion<br>RC<br>Outlet<br>TS<br>045<br>045<br>045<br>045<br>045<br>045<br>045<br>045            |                                 | LS Terrain                     | Inline               |                                              |                                                | •                     |
| Outlet<br>TS<br>940                                                                                |                                 |                                | Structure            | • • • • • • • • •                            | ••••                                           |                       |
| 935                                                                                                |                                 |                                |                      |                                              |                                                | 12492.03              |
|                                                                                                    |                                 |                                | Lateral<br>Structure |                                              |                                                |                       |
| 930                                                                                                | 200 400 600 800                 | 1000 1200                      |                      |                                              |                                                |                       |
|                                                                                                    | Station (ft)                    |                                | - Storage            |                                              | • • • • • • • •                                | · · · · · ·           |
| 4                                                                                                  |                                 |                                | Area                 | • • • • • • • • •                            |                                                | • • • • •             |
|                                                                                                    |                                 |                                |                      | • • • • • • • • •                            |                                                |                       |
|                                                                                                    |                                 |                                | 2D Flow<br>Area      |                                              |                                                | 1281                  |
|                                                                                                    |                                 |                                | Area                 |                                              |                                                |                       |
|                                                                                                    |                                 |                                | SA/2D Area           |                                              |                                                |                       |
|                                                                                                    |                                 |                                | Conn                 | • • • • • • • • •                            | •••••                                          | · · · · · · · <b></b> |
|                                                                                                    |                                 |                                |                      | • • • • • • • • •                            |                                                | • • • • • • • •       |
|                                                                                                    |                                 |                                | Pump<br>Station      | •••••                                        | ••••••••                                       |                       |
|                                                                                                    |                                 |                                | Station              |                                              |                                                |                       |
|                                                                                                    |                                 |                                |                      |                                              |                                                |                       |
|                                                                                                    |                                 |                                | HTab                 |                                              |                                                |                       |
|                                                                                                    |                                 |                                | Param.               |                                              |                                                |                       |
|                                                                                                    |                                 |                                | View                 |                                              |                                                | • • • • • • • •       |

DIVANI CARAVEL HOTEL ATHENS, GREECE Innovative water management in a changing climate

#### What are they and how we use them ?

- Lateral structures are levees that combine 1D river with 2D retention pond
- They use the weir equation to give boundary conditions
   (Q) to the 2D areas by using the Water surface
   elevation of the 1D river.

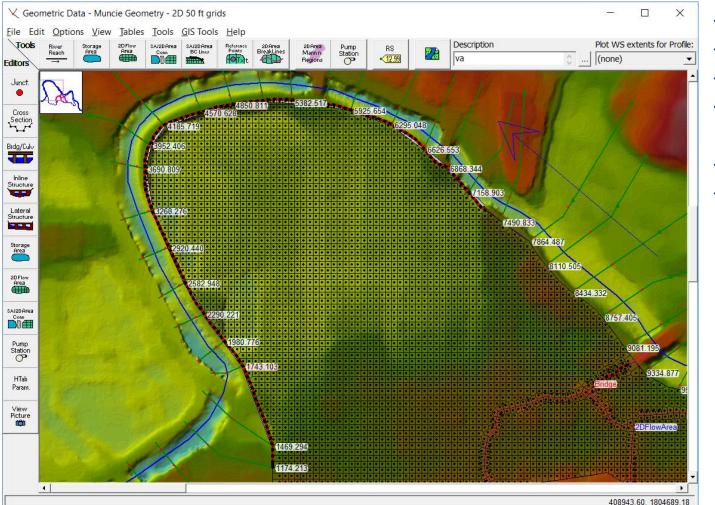
#### How we can make them in HEC-RAS?

- We import them from GIS in shape files
- We import them with coordinates

13214.80

- We draw the inside HEC-RAS (not accurate)
- We create edge lines from CSs inside RAS-Mapper and insert them again as shape files.






National Technical University of Athens School of Civil Engineering National Tech. Univ. of Athen:

### 8. Step 5: 2D Area – Retention Pond

DIVANI CARAVEL HOTEL ATHENS, GREECE Innovative water management in a changing climate

SEPTEMBER 7-9, 2022



- 2D area is the area of the retention pond
- Flow is 2-Dimensional
- The equations are solved on a mainly orthogonal grid
- Dimensions of the grid are defined by the user (ex. 20x20 m)
- Roughness coefficient is required
- The terrain elevation is stored on the grid nodes. The finer grid has a better representation of the terrain.

#### How we can make them in HEC-RAS?

- We import them from GIS in shape files
- We import them with coordinates
- We draw the inside HEC-RAS (not accurate)

#### Important Note!!

The perimeter of the 2D area must match the Lateral Structure Centerline.





National Technical University of Athens School of Civil Engineering National Tech Univ. of Athen

### 9. Step 6: Gates at Lateral Structures

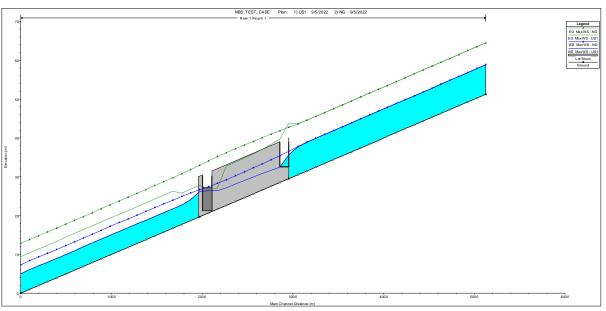
DIVANI CARAVEL HOTEL ATHENS, GREECE Innovative water management in a changing climate

SEPTEMBER 7-9, 2022

7thIAHR

| Apply Data       Apply Data         each:       Reach 1       HW RS:       2950         escription       Image: Connection       Image: Connection       Image: Connection         WPosition:       Right overbank       Image: Connection       Image: Connection         ype:       Storage Area/2D Flow Area       Image: Connection       Image: Connection         ype:       Storage Area/2D Flow Area       Image: Connection       Image: Connection         ype:       Storage Area/2D Flow Area       Image: Connection       Image: Connection         A/2DFA:       2D Flow Area: Perimeter 1       Set SA/2DFA       Weir Length:       Image:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                             |                                       |              |              |              |            |                      |            |      |           |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------|---------------------------------------|--------------|--------------|--------------|------------|----------------------|------------|------|-----------|----------|
| ver: River 1 Apply Data<br>each: Reach 1 HW RS: 2950 PET<br>escription<br>WPoation: Right overbank Plan Data<br>optimization Breach<br>Tailwater Connection<br>Type: Storage Area/2D Flow Area<br>sA/2DFA: 2D Flow Area<br>Centerline Length: 1000.00<br>Centerline Length: 1000.00<br>Centerl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 🐨 Latera      | l Structure                 | Editor - New G                        | eometry      |              |              |            |                      |            | -    |           | $\times$ |
| each: Reach 1 HW RS: 2950 I I Escription<br>Wrostion: Right overbank Detrivation Breach<br>Taiwater Connection<br>ype: Storage Area/2D Flow Area<br>SA/2DFA: 2D Flow Area: Perimeter 1 Set SA/2DFA<br>Overflow Computation Method<br>Overflow Computation Method<br>Normal 2D Equation Domain Use Weir Equation<br>I Culverts: No Flag Gates I Errain Profile<br>tructure Type: Weir/Gates/Culverts/Diversion Rating Curves Clip Weir Profile to 2D Cells<br>Weifor<br>I Culverts: No Flag Gates I Errain Profile<br>tructure Type: Weir/Gates/Culverts/Diversion Rating Curves Clip Weir Profile to 2D Cells<br>Weifor<br>I Culverts: No Flag Gates I Errain Profile<br>tructure Type: Weir/Gates/Culverts/Diversion Rating Curves Clip Weir Profile to 2D Cells<br>Weifor<br>I Culverts: Diversion Rating Curves Clip Weir Profile to 2D Cells<br>HW and TW Connections Determined Geo-Spatially<br>I Culverts<br>I Culver I Errain Profile<br>TW Cell Min Elev<br>LS Terrain<br>V Cell Min Elev<br>LS Terrain<br>I Culver I Errain (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | File View     | <ul> <li>Options</li> </ul> | ; Help                                |              |              |              |            |                      |            |      |           |          |
| escription<br>W Position: Right overbank  Optimization Breach<br>Taiwater Connection<br>SA/2DFA: 2D Flow Area: Perimeter 1 Set SA/2DFA<br>Weir Length: 1000.00<br>Centerline Length: 1000.00<br>Center                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | River: Riv    | ver 1                       | •                                     |              | Apply I      | Data         | + 🗯        |                      |            |      |           |          |
| W Position: Right overbank  Plan Data Optimization Breach  Pype: Storage Area/2D Flow Area SA/2DFA: 2D Flow Area: Perimeter 1 Set SA/2DFA Weir Length: 1000.00 Centerline Le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Reach: Rea    | ach 1                       | •                                     | HW RS:       | 2950         | <u> </u>     | t t        |                      |            |      |           |          |
| Talwater Connection<br>Type: Storage Area/2D Flow Area<br>A/2DFA: 2D Flow Area: Perimeter 1 Set SA/2DFA<br>Overflow Computation Method<br>Normal 2D Equation Domain © Use Weir Equation 2D Boundary<br>Normal 2D Equation Domain © Use Weir Equation 2D Boundary<br>Normal 2D Equation Domain © Use Weir Equation 2D Boundary<br>Normal 2D Equation Domain © Use Weir Equation 2D Boundary<br>Normal 2D Equation Domain © Use Weir Equation 2D Boundary<br>Normal 2D Equation Domain © Use Weir Equation 2D Boundary<br>Normal 2D Equation Domain © Use Weir Equation 2D Boundary<br>Normal 2D Equation Domain © Use Weir Equation 2D Boundary<br>Normal 2D Equation Domain © Use Weir Equation 2D Boundary<br>Club Weir /Gates/Culverts/Diversion Rating Curves Clip Weir Profile to 2D Cells<br>HW and TW Connections Determined Geo-Spatially<br>Use Veir Content of the Content of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Description   |                             |                                       |              | -Plan Data   |              | â. <u></u> |                      |            |      |           |          |
| ype: Storage Area/2D Flow Area<br>GA/2DFA: 2D Flow Area: Perimeter 1 Set SA/2DFA<br>Weir Length: 1000.00<br>Centerline Length: 1000.00<br>Centerline GIS Coords<br>I Culverts: No Flap Gates Culverts/Diversion Rating Curves Clip Weir Profile to 2D Cells<br>HW and TW Connections Determined Geo-Spatially<br>Centerline Geo-Spatially<br>Cent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HW Position:  | : Right ove                 | erbank                                | -            | Optimization | . Breach .   |            |                      |            |      |           |          |
| SA/2DFA: 2D Flow Area: Perimeter 1 Set SA/2DFA Weir Length: 1000.00<br>Centerline Length: 1000.00<br>Centerline GIS Coords<br>I Culverts: No Flap Gates Culverts/Diversion Rating Curves Clip Weir Profile to 2D Cells<br>Weir Connections Determined Geo-Spatially<br>Centerline Gis Coords<br>Clip Weir Profile to 2D Cells<br>HW and TW Connections Determined Geo-Spatially<br>Curvert<br>Curvert<br>Career in Profile to 2D Cells<br>Curver in Profile to 2D Cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                             |                                       |              |              |              |            |                      |            |      |           |          |
| A/2DPA: pD How Ace. Pennete 1 Deconvolution Centerline Converting Centerline Length: 1000.00<br>Overflow Computation Method<br>Normal 2D Equation Domain © Use Weir Equation © Use Velocity Centerline GIS Coords<br>I Culverts: No Flap Gates V Terrain Profile<br>Use Velocity Centerline GIS Coords<br>I Culverts: No Flap Gates V Terrain Profile to 2D Cells<br>Weir/Gates/Culverts/Diversion Rating Curves Clip Weir Profile to 2D Cells<br>Weir/Gates/Culverts/Diversion Rating Curves V Clip Weir Profile to 2D Cells<br>Weir/Gates/Culverts/Diversion Rating Curves V Clip Weir Profile to 2D Cells<br>Weir/Gates/Culverts/Diversion Rating Curves V Clip Weir Profile to 2D Cells<br>Weir/Gates/Culverts/Diversion Rating Curves V Clip Weir Profile to 2D Cells<br>Weir/Gates/Culverts/Diversion Rating Curves V Clip Weir Profile to 2D Cells<br>Weir/Gates/Culverts/Diversion Rating Curves V Clip Weir Profile to 2D Cells<br>Weir/Gates/Culverts/Diversion Rating Curves V Clip Weir Profile to 2D Cells<br>Weir/Gates/Culverts/Diversion Rating Curves V Clip Weir Profile to 2D Cells<br>Weir/Gates/Culverts/Diversion Rating Curves V Clip Weir Profile to 2D Cells<br>Weir/Gates/Culverts/Diversion Rating Curves V Clip Weir Profile to 2D Cells<br>Weir/Gates/Culverts/Diversion Rating Curves V Clip Weir Profile to 2D Cells<br>Weir/Gates/Culverts/Diversion Rating Curves V Clip Weir Profile to 2D Cells<br>Weir/Gates/Culverts/Diversion Rating Curves V Clip Weir Profile to 2D Cells<br>Weir/Gates/Culverts/Diversion Rating Curves V Clip Weir Profile to 2D Cells<br>Weir/Gates/Culverts/Diversion Rating Curves V Clip Weir Profile to 2D Cells<br>Weir/Gates/Culverts/Diversion Rating Curves V Clip Weir Profile to 2D Cells<br>Weir/Gates/Culverts/Diversion Rating Curves V Clip Weir Profile to 2D Cells<br>Weir/Gates/Culverts/Diversion Rating Curves V Clip Weir Profile to 2D Cells<br>Weir/Gates/Culverts/Diversion Rating Curves V Clip Weir Profile to 2D Cells<br>Weir/Gates/Culvers/Curvers/Curvers/Curvers/Curvers/Curvers/Curvers/Curvers/Curvers/Curvers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Type:         | Storage                     | Area/2D Flow Ar                       | ea           |              |              | -          |                      |            |      |           |          |
| Overflow Computation Method<br>Normal 2D Equation Domain Use Weir Equation Use Velocity Centerline GIS Coords<br>I Culverts: No Flap Gates<br>Tructure Type: Weir/Gates/Culverts/Diversion Rating Curves<br>Weir/Gates/Culverts/Diversion Rating Curves<br>HW and TW Connections Determined Geo-Spatially                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SA/2DFA:      | 2D Flow A                   | Area: Perimeter                       | 1            |              | Set SA/2DF   | Α          | Weir Length:         | 1000.00    |      |           |          |
| Normal 2D Equation Domain (* Use Weir Equation Use Velocity Centerline GIS Coords<br>I Culverts: No Flap Gates Terrain Profile<br>tructure Type: Weir/Gates/Culverts/Diversion Rating Curves Clip Weir Profile to 2D Cells<br>Weir/Gates/Culverts/Diversion Rating Curves Clip Weir Profile to 2D Cells<br>HW and TW Connections Determined Geo-Spatially<br>Content TS<br>Content TS<br>Co                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                             |                                       |              |              |              |            | Centerline Length:   | 1000.00    |      |           |          |
| Il Culverts: No Flap Gates<br>Terrain Profile<br>tructure Type: Weir/Gates/Culverts/Diversion Rating Curves<br>Weir/Gates/Culverts/Diversion Rating Curves<br>Weir/Gates/Culverts/Diversion Rating Curves<br>Weir/Gates/Culverts/Diversion Rating Curves<br>Up Weir Profile to 2D Cells<br>HW and TW Connections Determined Geo-Spatially<br>Culver<br>Curver<br>Sate<br>Curver<br>Sate<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curver<br>Curve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                             |                                       |              |              |              |            |                      |            |      |           |          |
| tructure Type: Weir/Gates/Culverts/Diversion Rating Curves Clip Weir Profile to 2D Cells<br>HW and TW Connections Determined Geo-Spatially<br>Usersion<br>BC<br>Outlet<br>Clip Weir Profile to 2D Cells<br>HW and TW Connections Determined Geo-Spatially<br>Legend<br>Lat Struct<br>Ground<br>Bank Sta<br>TW Cell Min Elev<br>LS Terrain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | O Normal      | 2D Equation                 | Domain 🖲 U                            | lse Weir Equ | uation       | Use Velocity |            | Centerline GIS C     | oords      |      |           |          |
| Werston<br>Werston<br>Werston<br>Culver<br>Werston<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Cu                                                                                                                                                                                            | All Culverts: | No Flap                     | Gates                                 |              |              |              | •          | Terrain Profil       | e          |      |           |          |
| Care     2956.15     2660.54*     2364.92*     2069.31*       Culvert     Image: Company of the compan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | /pe: Weir/G                 | ates/Culverts/Di                      | version Rat  | ing Curves   |              | -          | Clip Weir Profile to | 2D Cells   |      |           |          |
| Legend<br>Legend<br>Legend<br>Legend<br>Legend<br>Lat Struct<br>Ground<br>Bank Sta<br>TW Cell Min Elev<br>LS Terrain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Embaikment    |                             |                                       |              | HW and TW (  | Connections  | Deter      | mined Geo-Spatia     | lly        |      |           | <u>^</u> |
| Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver<br>Culver                                                                                                                                                                                            | Gate<br>1     |                             | 2956.                                 | 15           | 2660.54*     | 23           | 364.92     | * 2069.              | 31*        |      |           |          |
| C C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Culvert       | 40]                         | Í                                     |              |              |              |            |                      |            |      | -         |          |
| Werston<br>RC<br>Outlet<br>T<br>25<br>20<br>15<br>20<br>0<br>20<br>0<br>200<br>400<br>600<br>800<br>1000<br>1200<br>5<br>1200<br>5<br>1200<br>5<br>1200<br>5<br>1200<br>5<br>1200<br>5<br>1200<br>5<br>1200<br>5<br>1200<br>5<br>1200<br>5<br>1200<br>1200<br>5<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200 |               | 35                          |                                       |              |              |              |            | _                    |            | -    |           | t        |
| Outlet<br>TS         25<br>20<br>15<br>-200         TW Cell Min Elev<br>LS Terrain           200         400         600         800         1000         1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Diversion     | _ 1                         | h                                     |              |              |              |            |                      |            |      | ٠         |          |
| 20<br>15<br>-200 0 200 400 600 800 1000 1200<br>Station (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | 5 30-                       | 2                                     |              | C.           |              |            |                      | 1          | Т    |           | -11      |
| 20<br>15<br>-200 0 200 400 600 800 1000 1200<br>Station (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Outlet<br>TS  | LE 25                       |                                       |              |              |              |            |                      |            | _    | LS Terrai | n        |
| 15<br>-200 0 200 400 600 800 1000 1200<br>Station (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | -                           |                                       |              |              |              |            |                      |            |      |           |          |
| -200 0 200 400 600 800 1000 1200<br>Station (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | 20-                         |                                       |              |              |              |            |                      | Thursday - |      |           |          |
| -200 0 200 400 600 800 1000 1200<br>Station (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                             |                                       |              |              |              |            |                      |            |      |           |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | -200                        | , , , , , , , , , , , , , , , , , , , |              | 200          | 400          | 600        | 800                  | 1000       | 1200 |           |          |
| ٩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                             |                                       |              |              | Station (m   | 1)         |                      |            |      |           | -        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4             |                             |                                       |              |              |              |            |                      |            |      |           | <u>}</u> |

- Gates are essential in the design to let the water in and out of the retention pond.
- The are mainly designed as broad-crested weirs.
- They need geometrical characteristics.
- In boundary condition table we can assign when they open and close.
- Gates are the most important design parameter of the optimized retention pond system.






organizers



#### 10. Step 7: Results and Calibration River: River 1 Reach: Reach 1 RS: 591.23' ▦ 800 Legend Stage- US1 13 700 Flow- US1 12 Stage- NG 600 Flow- NG 11 500 Ē vation 10 400 9 300 8 200 100 30Aug2022 2300 30Aug2022 2400 31Aug2022 0300 31Aug2022 0100 31Aug2022 0200 Time and Date



- 1. Check the results in specific cross sections
  - No change is expected until we reach the area of the retention pond.
  - Only flow discharge must be reduced in the area of the pond.
  - Both flow discharge and stage must reduce after the retention pond and the descending part of the hydrograph must be delayed.
- 2. Check the new water surface elevation to see if it meets the new design criteria.







### 11. Comprehension

## Participants need to hand in a technical report where they are going to present the results from the hands on tutorial in groups of 2 or 3 people.

#### In the report the following must be addressed:

- 1. Introduction Scope of the present work
- 2. Methodology and mathematical background
  - 3. Creation and application of the model
    - 4. Results and Discussion





National Technical University of Athens Chilling School of Civil Engineering National Tech. Univ. of Athens

### ANY QUESTIONS ?

### THANK YOU VERY MUCH FOR YOUR ATTENTION!